
Advances in Mechanical Engineering and its Applications (AMEA) 158 
Vol. 2, No. 2, 2012, ISSN 2167-6380 
Copyright © World Science Publisher, United States 
www.worldsciencepublisher.org  

 

 
 

On a Unified Integral Involving the Product of Srivastava’s 
Polynomials and Generalized Mellin-Barnes Type of Contour 

Integral 
 

 
Praveen Agarwal 

 
Department of Mathematics, Anand International College of Engineering, Jaipur-303012, India 

  E-mail: goyal.praveen2011@gmail.com  
 

Abstract – The aim of the present paper is to evaluate a new unified integral whose integrand contains products of the 
H -function, Srivastava polynomials and generalized hypergeometric functions having general arguments. The integral 
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illustration, we record here some special cases of our main integral which are also new and of interest by themselves.  
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1. Introduction  
  
The Srivastava polynomials introduced by Srivastava 
defined as follows [26, p.1, Eq. (1)]: 
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where m is an arbitrary positive integers and the 
coefficients A (n,k 0)n,k ≥  are arbitrary constants, real 

or complex. On   suitably specializing the coefficients 
An, k , [ ]m xnS   yields a number of known polynomials 

as its special cases. These include, among others, the 
Hermite polynomials, the Jacobi polynomials, the 
Lagurre polynomials, the Bessel’s polynomials and 
several others [27, pp. 158-161].  
 
A lot of research work has recently come up on the study 
and development of a function that is more general than 
the Fox H-function, popularly known as H - function. It 
was introduced by Inayat-Hussain [19, 20] and now 
stands on a fairly firm footing through the research 
contributions of various authors [1-3, 7-9, 15-16, 18-20, 
24-25].    
The H -function will be defined and represented as 
follows [19]: 
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 Buschman and Srivastava [16] has proved that the 
integral on the right hand of (1.1) is absolutely 

convergent when 0Ω >  and 1arg
2

z π< Ω  , where 
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(1.4) 
 
here, and throughout the paper ( )1,...,a j Pj =   and b j  

( )1,...,j Q=  are complex parameters, 0jα ≥  

( )1,..., ,j P= ( )0 1,...,j Qjβ ≥ =  (not all zero 

simultaneously) and the exponents ( )1,...,jA j N=  and 

jB ( 1,..., )j M Q= +  can take on non-negative values. 

For further details of H  -function one can refer the 
original paper of Buschman and Srivastava [16]. 
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Generalized hypergeometric function is defined as 
follows [18]:  
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                                                                                  (1.5) 
 
The function Fp q  reduce to well-known Fp q  for 

1( 1,..., ), 1( 1,..., )A j p B j qj j= = = = in it. For further 

details one can refer to [23]. 
 
This paper was probably the first where the explicit 
solution of unified integral in terms of the H -function. 
Such investigations now are of a great interest in 
connection with applications; for example, see in this 
connection [1-14]. 
         
 
2. Main Results 
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The conditions of validity of (2.1) are 
(i)   ( )0, Re , , , , 0.q l m n p p′≥ >  

(ii) ; 1, 1R S R S aα≤ = + <  

(iii) 1arg , 0
2

z π< Ω Ω > Where Ω  is given by (1.4).                                                                                         

(iv) Re( ) Re( ) min Re 0
b jl m q
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 
 

 

 
Proof: To evaluate the integral (2.1) we first express 

[ ].U
VS  , [ ].U

VS ′

′  and [ ].R SF in its series form with the 
help of (1.1) and (1.5) respectively and put the value of 

[ ],
,

M N
P QH z  in terms of Mellin-Barnes contour integral by 

help of (1.2). Interchanging the order of integration and 
summation (which is permissible under the conditions 
stated with (2.1)) and evaluate the x-integral with the help 
of the following result [22]: 
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(2.2) 
 
Finally, interpreting the ξ contour integral in terms of the 
H -function, we arrive at the right hand side of (2.1). 
 
3. An Important Special Cases of Main 
Result: 
 
On account of the most general nature of H -function, 

[ ] [ ],U U

V Vy yS S ′

′  and [ ].R SF occurring in our main 
integral given by (2.1), a large number of integrals 
involving simpler functions of one variable can be easily 
obtained as their special cases. We however gave here 
only some special cases by way of illustration: 
(i) If we take ( 1,..., )A j Nj =  and ( 1,..., )B j M Qj = + are 

all equal to unity in equation (2.1), then the H  -function 
reduce to the Fox H- function [18]. We have an 
interesting result it is also believed to be new result:    
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where conditions of validity of (3.1) easily follow from 
those given in (2.1).    
                  
(ii) If we take 0V =  and 0V ′ =  in (2.1), we arrive at the 
following integrals which is also believe to be new   and 
sufficiently general in nature:
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conditions of validity of (3.2) easily follow from those 
given in (2.1)  
(iii) If in (3.1) we take 0V ′ = and R SF are unity then we 
have a known result [17]. 
 
4. Conclusions 
 
The present paper is to evaluate a new unified integral 
whose function involved in the integral formulae as well 
as their arguments are quite general in nature and so our 
findings provide interesting unifications and extensions 
of a number of (known and new) results. 
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